Washtenaw Community College Comprehensive Report

ATT 277 Automotive Powertrain Systems Effective Term: Fall 2025

Course Cover

College: Advanced Technologies and Public Service Careers **Division:** Advanced Technologies and Public Service Careers

Department: Transportation Technologies

Discipline: Automotive & Transportation Tech (new)

Course Number: 277 Org Number: 14100

Full Course Title: Automotive Powertrain Systems Transcript Title: Automotive Powertrain Systems

Is Consultation with other department(s) required: No **Publish in the Following:** College Catalog, Web Page

Reason for Submission: Course Change

Change Information:

Consultation with all departments affected by this course is required.

Rationale: Update the course for the new discipline.

Proposed Start Semester: Fall 2024

Course Description: In this course, students will learn about the use of a chassis roll dynamometer for testing and validation of powertrain systems. Students will learn the principles of dynamometer operation including safety systems, road cycle testing, emissions testing, and durability testing. Students also gain practical experience in the laboratory, as well as develop and execute a test sequence for horsepower, emissions testing, and fuel system testing. This course was previously ASV 277.

Course Credit Hours

Variable hours: No

Credits: 4

Lecture Hours: Instructor: 60 Student: 60

Lab: Instructor: 45 Student: 45 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 105 Student: 105

Repeatable for Credit: NO Grading Methods: Letter Grades

Audit

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

No Level Required

Requisites

Prerequisite

ATT 130 minimum grade C

and

Prerequisite

ATT 131 minimum grade C

General Education

Request Course Transfer

Proposed For:

Student Learning Outcomes

1. Apply dynamometer safety techniques when preparing a vehicle for dynamometer testing.

Assessment 1

Assessment Tool: Outcome-related student project

Assessment Date: Winter 2025

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Outcome-related rubric criteria

Standard of success to be used for this assessment: 75% of students will score 75% or higher.

Who will score and analyze the data: Departmental faculty

2. Create dynamometer vehicle output data sets during testing.

Assessment 1

Assessment Tool: Outcome-related student project

Assessment Date: Winter 2025 Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Outcome-related rubric criteria

Standard of success to be used for this assessment: 75% of students will score 75% or higher.

Who will score and analyze the data: Departmental faculty

3. Employ cloud-based computing to store and share formatted test data sets.

Assessment 1

Assessment Tool: Outcome-related student project

Assessment Date: Winter 2025 Assessment Cycle: Every Three Years

Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Outcome-related rubric criteria

Standard of success to be used for this assessment: 75% of students will score 75% or higher.

Who will score and analyze the data: Departmental faculty

4. Evaluate data sets that have been processed with post-processing tools.

Assessment 1

Assessment Tool: Outcome-related student project

Assessment Date: Winter 2025

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Outcome-related rubric criteria

Standard of success to be used for this assessment: 75% of students will score 75% or higher.

Who will score and analyze the data: Departmental faculty

5. Create a test cycle that will be used to control an emissions test on a chassis dynamometer.

Assessment 1

Assessment Tool: Outcome-related student project

Assessment Date: Winter 2025

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Outcome-related rubric criteria

Standard of success to be used for this assessment: 75% of students will score 75% or higher.

Who will score and analyze the data: Departmental faculty

Course Objectives

- 1. Demonstrate the procedure for installing a vehicle on a chassis dynamometer.
- 2. Identify the proper use of tie down straps.
- 3. Recognize appropriate vehicle restraint points.
- 4. Discuss the storage and retrieval of test data.
- 5. Recognize the characteristics of acceptable test data.
- 6. Generate repeatable test data.
- 7. Discuss forms of data management and storage.
- 8. Demonstrate proper formatting and retrieval of test data.
- 9. Utilize a cloud-based storage system and link data files for access.
- 10. Analyze data for performance metrics.
- 11. Build data visualizations using best line fit techniques.
- 12. Generate a test report that explains testing results.
- 13. Identify the operation of external sensors used for data collection.
- 14. Build a test cycle for determining vehicle emission performance.
- 15. Execute a drive cycle test.
- 16. Interpret drive cycle data.

New Resources for Course

Course Textbooks/Resources

Textbooks

Manuals

Periodicals

Software

Equipment/Facilities

Level III classroom

Other: OE169 with Chassis Dynamometer

Reviewer	Action	<u>Date</u>
Faculty Preparer:		
Shawn Deron	Faculty Preparer	Mar 27, 2024
Department Chair/Area Director:		
Rocky Roberts	Recommend Approval	Mar 27, 2024
Dean:		
Eva Samulski	Recommend Approval	Apr 03, 2024
Curriculum Committee Chair:		
Randy Van Wagnen	Recommend Approval	Mar 20, 2025
Assessment Committee Chair:		
Jessica Hale	Recommend Approval	Mar 20, 2025

Vice President for Instruction:

Brandon Tucker Approve Mar 21, 2025

Washtenaw Community College Comprehensive Report

ASV 277 Automotive Powertrain Systems Effective Term: Fall 2023

Course Cover

College: Advanced Technologies and Public Service Careers **Division:** Advanced Technologies and Public Service Careers

Department: Transportation Technologies

Discipline: Auto Services (new)

Course Number: 277 Org Number: 14100

Full Course Title: Automotive Powertrain Systems Transcript Title: Automotive Powertrain Systems

Is Consultation with other department(s) required: No **Publish in the Following:** College Catalog, Web Page

Reason for Submission: Change Information:

Other:

Rationale: The goal is to move this course from conditionally approved to fully approved. This will include additions and updates to the outcomes, objectives, assessments, and evaluation.

Proposed Start Semester: Winter 2022

Course Description: In this course, students will learn about the use of a chassis roll dynamometer for testing and validation of powertrain systems. Students will learn the principles of dynamometer operation including safety systems, road cycle testing, emissions testing, and durability testing. Students also gain practical experience in the laboratory, as well as develop and execute a test sequence for horsepower, emissions testing, and fuel system testing.

Course Credit Hours

Variable hours: No

Credits: 4

Lecture Hours: Instructor: 60 Student: 60

Lab: Instructor: 45 Student: 45 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 105 Student: 105

Repeatable for Credit: NO Grading Methods: Letter Grades

Audit

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

No Level Required

Requisites

Prerequisite

ASV 130 minimum grade "C"

and

Prerequisite

ASV 131 minimum grade "C"

General Education

Request Course Transfer

Proposed For:

Student Learning Outcomes

1. Apply dynamometer safety techniques when preparing a vehicle for testing.

Assessment 1

Assessment Tool: Outcome-related student project

Assessment Date: Winter 2023

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 75% of students will score 75% or higher.

Who will score and analyze the data: Departmental faculty

2. Create dynamometer vehicle output data sets during testing.

Assessment 1

Assessment Tool: Outcome-related student project

Assessment Date: Winter 2023 Assessment Cycle: Every Three Years Course section(s)/other population: All

Number students to be assessed: All

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 75% of students will score 75% or higher.

Who will score and analyze the data: Departmental faculty

3. Employ cloud based computing to store and share formatted test data sets.

Assessment 1

Assessment Tool: Outcome-related student project

Assessment Date: Winter 2023

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 75% of students will score 75% or higher.

Who will score and analyze the data: Departmental faculty

4. Evaluate data sets that have been processed with post processing tools.

Assessment 1

Assessment Tool: Outcome-related student project

Assessment Date: Winter 2023

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 75% of students will score 75% or higher.

Who will score and analyze the data: Departmental faculty

5. Create a test cycle that will be used to control an emissions test on a chassis dynamometer.

Assessment 1

Assessment Tool: Outcome-related student project

Assessment Date: Winter 2023

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 75% of students will score 75% or higher.

Who will score and analyze the data: Departmental faculty

Course Objectives

- 1. Demonstrate the procedure for installing a vehicle on a chassis dynamometer.
- 2. Identify the proper use of tiedown straps.
- 3. Recognize appropriate vehicle restraint points.
- 4. Discuss the storage and retrieval of test data.
- 5. Recognize the characteristics of acceptable test data.
- 6. Generate repeatable test data.
- 7. Discuss forms of data management and storage.
- 8. Demonstrate proper formatting and retrieval of test data.
- 9. Utilize a cloud-based storage system and link data files for access.
- 10. Analyze data for performance metrics.
- 11. Build data visualizations using best line fit techniques.
- 12. Generate a test report that explains test results.
- 13. Identify the operation of external sensors used for data collection.
- 14. Build a test cycle for determining vehicle emission performance.
- 15. Execute a drive cycle test.
- 16. Interpret drive cycle data.

New Resources for Course

Course Textbooks/Resources

Textbooks

Manuals

Periodicals

Software

Equipment/Facilities

Level III classroom

Other: OE169 with Chassis Dynamometer

Reviewer	Action	Date
Faculty Preparer:		
Allen Day	Faculty Preparer	May 05, 2022
Department Chair/Area Director:		
Rocky Roberts	Recommend Approval	May 20, 2022
Dean:		
Jimmie Baber	Recommend Approval	May 26, 2022
Curriculum Committee Chair:		
Randy Van Wagnen	Recommend Approval	Feb 09, 2023
Assessment Committee Chair:		

Shawn Deron Recommend Approval Feb 10, 2023

Vice President for Instruction:

Victor Vega Approve Feb 13, 2023

Washtenaw Community College Comprehensive Report

ASV 277 Automotive Powertrain Systems Conditional Approval Effective Term: Fall 2015

Course Cover

Division: Advanced Technologies and Public Service Careers

Department: Automotive Services

Discipline: Auto Services **Course Number:** 277 **Org Number:** 14100

Full Course Title: Automotive Powertrain Systems **Transcript Title:** Automotive Powertrain Systems

Is Consultation with other department(s) required: No Publish in the Following: College Catalog, Web Page

Reason for Submission: New Course

Change Information:

Rationale: This course is one of three new courses that support the Powertrain Development

Technician and Automotive Test Technician programs.

Proposed Start Semester: Fall 2015

Course Description: In this course, students will learn about the use of a chassis roll dynamometer for testing and validation of powertrain systems. Students will learn the principles of dynamometer operation including safety systems, road cycle testing, emissions testing, and durability testing. Students also gain practical experience in the laboratory, and develop and execute a test sequence for horsepower, emissions testing, and fuel system testing.

Course Credit Hours

Variable hours: No

Credits: 4

Lecture Hours: Instructor: 60 Student: 60

Lab: Instructor: 45 Student: 45 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 105 Student: 105

Repeatable for Credit: NO Grading Methods: Letter Grades

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

Requisites

Prerequisite

ASV 131 minimum grade "C"

Prerequisite

ASV 132 minimum grade "C"

General Education

Request Course Transfer Proposed For:

Student Learning Outcomes

1. Apply principles of testing and validation during an emission test cycle to determine vehicle emissions output during the test.

Assessment 1

Assessment Tool: Project Assessment Date: Fall 2016

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 75% of students will score

75% or better.

Who will score and analyze the data: ASV faculty

Course Objectives

1. Apply an appropriate vehicle test cycle to be used for vehicle emissions testing.

Matched Outcomes

1. Apply principles of testing and validation during an emission test cycle to determine vehicle emissions output during the test.

New Resources for Course Course Textbooks/Resources

Textbooks Manuals Periodicals Software

Equipment/Facilities

Reviewer	Action	<u>Date</u>
Faculty Preparer:		
Allen Day	Faculty Preparer	Apr 06, 2015
Department Chair/Area Director:		
Allen Day	Recommend Approval	Apr 06, 2015
Dean:		
Brandon Tucker	Recommend Approval	Apr 14, 2015
Vice President for Instruction:		
Bill Abernethy	Conditional Approval	Apr 17, 2015