Washtenaw Community College Comprehensive Report

CST 185 Local and Mobile Networking Essentials
 Effective Term: Spring/Summer 2024

Course Cover

College: Business and Computer Technologies
Division: Business and Computer Technologies
Department: Computer Science \& Information Technology
Discipline: Computer Systems Technology
Course Number: 185
Org Number: 13400
Full Course Title: Local and Mobile Networking Essentials
Transcript Title: Local/Mobile Network Essential
Is Consultation with other department(s) required: No
Publish in the Following: College Catalog, Time Schedule, Web Page
Reason for Submission: Course Change
Change Information:
Consultation with all departments affected by this course is required.
Course description
Pre-requisite, co-requisite, or enrollment restrictions
Outcomes/Assessment
Objectives/Evaluation
Rationale: Update course content and description to industry practice.
Proposed Start Semester: Winter 2024
Course Description: In this course, students learn basic networking concepts including the roles of various network devices, how they are connected and how they communicate. Students are introduced to concepts of peer-to-peer, client/server relationships, network topologies, media, network architectures, the open systems interconnection (OSI) and Transmission Control Protocol (TCP)/ Internet Protocol (IP) models, Ethernet, TCP/IP protocols, IPv4/IPv6, Media Access Control (MAC) addressing, routing, Network Address Translation (NAT), virtual private networks (VPNs), wireless technologies, wireless access points and security, Bluetooth, Near Field Communication (NFC), and Dedicated Short-Range Communication (DSRC). The course also provides a strong foundation towards preparation for the CompTIA Network+ Exam.

Course Credit Hours

Variable hours: No
Credits: 4
Lecture Hours: Instructor: 60 Student: 60
Lab: Instructor: 0 Student: 0
Clinical: Instructor: 0 Student: 0
Total Contact Hours: Instructor: 60 Student: 60
Repeatable for Credit: NO
Grading Methods: Letter Grades
Audit
Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading \& Writing

College-Level Math

No Level Required

Requisites

Level II Prerequisite

CST 160

General Education

General Education Area 7 - Computer and Information Literacy

Assoc in Arts - Comp Lit
Assoc in Applied Sci - Comp Lit
Assoc in Science - Comp Lit

Request Course Transfer
 Proposed For:

Eastern Michigan University

Student Learning Outcomes

1. Distinguish and differentiate the main types of network topologies and how network appliances and end point systems make up a network.

Assessment 1
Assessment Tool: Outcome-related exam questions
Assessment Date: Fall 2024
Assessment Cycle: Every Three Years
Course section(s)/other population: All sections
Number students to be assessed: All students
How the assessment will be scored: Answer key
Standard of success to be used for this assessment: 70\% of students will score 70% or higher.
Who will score and analyze the data: Departmental faculty
2. Identify the service and function of each layer of the OSI and TCP/IP models.

Assessment 1

Assessment Tool: Outcome-related exam questions
Assessment Date: Fall 2024
Assessment Cycle: Every Three Years
Course section(s)/other population: All sections
Number students to be assessed: All students
How the assessment will be scored: Answer key
Standard of success to be used for this assessment: 70\% of students will score 70% or higher.
Who will score and analyze the data: Departmental faculty
3. Identify the role of each device in local and wide area networks, including routers, switches, servers, wireless access points, end-point systems and their respective cabling infrastructure.

Assessment 1

Assessment Tool: Outcome-related exam questions
Assessment Date: Fall 2024
Assessment Cycle: Every Three Years
Course section(s)/other population: All sections
Number students to be assessed: All students
How the assessment will be scored: Answer key
Standard of success to be used for this assessment: 70\% of students will score 70% or higher.
Who will score and analyze the data: Departmental faculty
4. Demonstrate how to configure a client work station with IPv4 to function in a live network, how to subnet it and explain how it differs from IPv6.

Assessment 1
Assessment Tool: Outcome-related lab activity
Assessment Date: Fall 2024
Assessment Cycle: Every Three Years
Course section(s)/other population: All sections
Number students to be assessed: All students
How the assessment will be scored: Student achievement checklist
Standard of success to be used for this assessment: 70\% of students will configure a client work station on a live network.
Who will score and analyze the data: Departmental faculty
5. Define the various aspects of wireless networking including the equipment and the protocols distinguishing their performance in a range of environments, including Ethernet, Fiber, wireless local area networks (LANs), Bluetooth, NFC, and DSRC.

Assessment 1

Assessment Tool: Outcome-related exam questions
Assessment Date: Fall 2024
Assessment Cycle: Every Three Years
Course section(s)/other population: All sections
Number students to be assessed: All students
How the assessment will be scored: Answer key
Standard of success to be used for this assessment: 70\% of students will score 70% or higher.
Who will score and analyze the data: Departmental faculty

Course Objectives

1. Identify the various types of networks; LAN, wide-area network (WAN), metropolitan area network (MAN) and Enterprise.
2. Define the main purposes of networking, including sharing data, resources, etc.
3. List the differences between peer-to-peer networking and client server networking.
4. Identify various networking devices including Ethernet interfaces, switches, home modems, wireless access points and routers and explain the operation of each, contrasting the differences between their functionality.
5. Install, configure and test various network devices using wireless access points and home routers and switches.
6. Identify the various wired topologies used in networks, including bus, start, extended star, ring and mesh.
7. Identify the primary types of media cabling used with LANs including unshielded twisted pair (UTP), fiber optic, atmosphere, etc. and define the limitations of each, including crosstalk, overall length, etc.
8. Identify the seven layers of the OSI model, including the interfaces between the layers, and the virtual transmissions between layers on the sending and receiving machines.
9. Identify the Ethernet networking architecture, including its access method, collision control, contention, encapsulation and limitations.
10. Contrast the Carrier Sense Multiple Access/Collision Detection (CSMA/CD) and Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) access methods, and the importance of each in both wired and wireless networking.
11. Identify the frame structure used with Ethernet, explaining the parts, headers, trailers, etc. and the function each of these parts have in the transmission process.
12. Identify various networking protocols and explain the term, "protocol stack" and its relationship to the OSI model, using the TCP/IP protocol as an example.
13. Define the key characteristics of IP addressing, both IPv4 and IPv6, the classes, the importance of the subnet mask and gateway, etc., the hierarchical structure, methods of representation (decimal/binary) and the methods used to increase the number of available addresses (such as subnetting).
14. Demonstrate use of common commands to test and validate network services and communications.
15. Differentiate and contrast the various protocols within TCP/IP, (Domain Name System (DNS), Dynamic Host Configuration Protocol (DHCP), Telnet, Internet Control Message Protocol (ICMP), Address Resolution Protocol (ARP), VPN, TCP, IP etc.), defining the functions and parts of each within the stack.
16. Install, configure and utilize frame/packet capture programs, and use them to look inside the frame, to identify the various parts in real time.
17. Describe the difference between a LAN and a virtual local area network (VLAN).
18. Distinguish between the types of wireless networks and differentiate between their various speeds, distances, and applicability to different business situations.
19. Demonstrate how to install, configure, and test a simple LAN and subnet it using a switch, router, wireless access point, servers and client systems.
20. Identify various VPN configurations and configure client connections to VPN servers, and how wired and wireless security is implemented in each environment.
21. Identify the characteristics of alternate wireless connectivity protocols, including Bluetooth, NFC, and DSRC, including operating characteristics as well as inner communication compatibility with other networking devices.

New Resources for Course

Course Textbooks/Resources

Textbooks
CDTS. Local and Wide Area Networking, Principles and Technologies, 2nd ed. Lulu, 2023
Manuals
Periodicals
Software

Equipment/Facilities

Level III classroom
Computer workstations/lab
Data projector/computer
ReviewerFaculty Preparer:
James Lewis
Action
Date
Department Chair/Area Director:
Scott ShaperRecommend ApprovalMay 05, 2023
Dean:
Eva SamulskiRecommend ApprovalMay 12, 2023
Curriculum Committee Chair:Faculty Preparer
Apr 28, 2023Randy Van Wagnen
Assessment Committee Chair:Jessica Hale
Vice President for Instruction:
Brandon TuckerRecommend ApprovalNov 14, 2023
Recommend ApprovalNov 15, 2023ApproveNov 17, 2023

Washtenaw Community College Comprehensive Report

CST 185 Local and Mobile Networking Essentials
 Effective Term: Fall 2019

Course Cover

Division: Business and Computer Technologies
Department: Computer Instruction
Discipline: Computer Systems Technology
Course Number: 185
Org Number: 13400
Full Course Title: Local and Mobile Networking Essentials
Transcript Title: Local/Mobile Network Essential
Is Consultation with other department(s) required: No
Publish in the Following: College Catalog, Time Schedule, Web Page
Reason for Submission: Three Year Review / Assessment Report
Change Information:
Course discipline code $\&$ number
Course title
Course description
Outcomes/Assessment
Objectives/Evaluation
Other:
Rationale: 1. Course Number - This is considered the first course to be taken in networking, and therefore should be a " 100 " level course - it is a lead-in to the more advanced Cisco and Microsoft courses that are " 200 " Level courses. 2. Course Credit Hours - Credit Hours should match Contact Hours which are four contact hours per week. 3. Course Title - The networking concepts covered now are far more inclusive than just with the "PC" and therefore the title should be changed to reflect networking as a whole. 4. Modification of Outcome Requirements - the addition of Serial, Bluetooth, NFC, and DSRC communication altered a number of the Outcomes due to basically a total course rearrangement. 5 .
Objective Modification- because of the additional material added for Serial, Bluetooth, NFC, and DSRC, considerable rearrangement of the course (and therefore the Objectives) was necessary. This including combining Peer to Peer Communication and Client Server, combining Topology and Media, combining Ethernet Architecture and Ethernet Protocol, combining Packet Software labs using TCP/IP Protocols, and combining TCP/IP Applications lab projects. 6. Course Description - This was also changed as noted above, bringing in the new additional protocols.
Proposed Start Semester: Winter 2019
Course Description: Students learn basic networking concepts including building networks, connecting to a network and connecting networks. Included are peer-to-peer, client/server relationships, network topologies, media, architectures, the OSI model, Ethernet and TCP/IP protocols, IPv4/IPv6 and MAC addressing, routers/routing, network printing, NAT, VPN's, wireless, serial communication, Bluetooth, NFC, and DSRC. The course also provides a strong foundation in preparation for the CompTIA
Network+ Exam. This course was previously CST 225.

Course Credit Hours

Variable hours: No
Credits: 4
Lecture Hours: Instructor: 60 Student: 60
Lab: Instructor: 0 Student: 0
Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 60 Student: 60
Repeatable for Credit: NO
Grading Methods: Letter Grades
Audit
Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading \& Writing

College-Level Math

No Level Required

Requisites

Level II Prerequisite
Basic computer skills with the Windows Operating System would be extremely helpful or completion of CIS 100.

General Education

General Education Area 7 - Computer and Information Literacy
Assoc in Arts - Comp Lit
Assoc in Applied Sci - Comp Lit
Assoc in Science - Comp Lit

Request Course Transfer Proposed For:

Eastern Michigan University

Student Learning Outcomes

1. Distinguish and differentiate the main types of networks and network architecture by defining the layers of the OSI Model and identifying various types of point-to-point networking devices including network interface cards and switches.

Assessment 1

Assessment Tool: Written Exam specifically created for the assessment
Assessment Date: Fall 2021
Assessment Cycle: Every Three Years
Course section(s)/other population: All sections
Number students to be assessed: All students
How the assessment will be scored: Rubric: A written test will be given which will be a multiple choice exam with Questions/answers chosen from portions of the section tests given throughout the semester. The exam will be based on key concepts of the course objectives which make up each of the outcomes listed above. Tests will be blind-scored using a Scantron machine and results (right/wrong) for each question asked will be tabulated. A rubric will be used as a standard of the level of success in meeting those Outcomes and objectives that are listed in the syllabus. The test will be divided into sections, each identified with an outcome, and the questions in each section will address the objectives
Standard of success to be used for this assessment: Rubric Used: 1. Average of all students taking the test should equal or exceed 70% correct answers for all questions used in the assessment test. 2.70% or greater of the number of students taking the assessment test should equal or exceed that 70% mark for all the question used in the assessment test. 3. Outcome Success: Average of all student scores for each particular outcome's part of the test should equal or exceed 70%.

Who will score and analyze the data: Instructors teaching the Networking course will blindscore the test and tabulate the results. These will be reviewed and matched with the above rubric and will be used as the standard of measurement during the analysis period. The instructors teaching/developing the course will make necessary analysis and changes based on the results.
2. Distinguish among the various types of networking topologies, various kinds of networking media and identify point-to-point networking architectures, protocols, and frame structure.

Assessment 1

Assessment Tool: Written Exam specifically created for the assessment
Assessment Date: Fall 2021
Assessment Cycle: Every Three Years
Course section(s)/other population: All sections
Number students to be assessed: All students
How the assessment will be scored: Rubric: A written test will be given which will be a multiple choice exam with Questions/answers chosen from portions of the section tests given throughout the semester. The exam will be based on key concepts of the course objectives which make up each of the outcomes listed above. Tests will be blind-scored using a Scantron machine and results (right/wrong) for each question asked will be tabulated. A rubric will be used as a standard of the level of success in meeting those Outcomes and objectives that are listed in the syllabus. The test will be divided into sections, each identified with an outcome, and the questions in each section will address the objectives
Standard of success to be used for this assessment: Rubric Used: 1. Average of all students taking the test should equal or exceed 70% correct answers for all questions used in the assessment test. 2.70% or greater of the number of students taking the assessment test should equal or exceed that 70% mark for all the question used in the assessment test. 3. Outcome Success: Average of all student scores for each particular outcome's part of the test should equal or exceed 70%.
Who will score and analyze the data: Instructors teaching the Networking course will blindscore the test and tabulate the results. These will be reviewed and matched with the above rubric and will be used as the standard of measurement during the analysis period. The instructors teaching/developing the course will make necessary analysis and changes based on the results.
3. Identify the characteristics of both peer-to-peer and client server networking and distinguish the characteristics of a Microsoft Active Directory environment.

Assessment 1

Assessment Tool: Written Exam specifically created for the assessment
Assessment Date: Fall 2021
Assessment Cycle: Every Three Years
Course section(s)/other population: All sections
Number students to be assessed: All students
How the assessment will be scored: Rubric: A written test will be given which will be a multiple choice exam with Questions/answers chosen from portions of the section tests given throughout the semester. The exam will be based on key concepts of the course objectives which make up each of the outcomes listed above. Tests will be blind-scored using a Scantron machine and results (right/wrong) for each question asked will be tabulated. A rubric will be used as a standard of the level of success in meeting those Outcomes and objectives that are listed in the syllabus. The test will be divided into sections, each identified with an outcome, and the questions in each section will address the objectives
Standard of success to be used for this assessment: Rubric Used: 1. Average of all students taking the test should equal or exceed 70% correct answers for all questions used in the assessment test. 2.70% or greater of the number of students taking the assessment test should equal or exceed that 70% mark for all the question used in the assessment test. 3. Outcome

Success: Average of all student scores for each particular outcome's part of the test should equal or exceed 70%.
Who will score and analyze the data: Instructors teaching the Networking course will blindscore the test and tabulate the results. These will be reviewed and matched with the above rubric and will be used as the standard of measurement during the analysis period. The instructors teaching/developing the course will make necessary analysis and changes based on the results.
4. Identify and distinguish between the parts of the TCP/IP protocol stack, including various applications and define the concepts behind IPv4 and IPv6 addressing including routing, routers, network address translation and network printing.

Assessment 1

Assessment Tool: Written Exam specifically created for the assessment
Assessment Date: Fall 2021
Assessment Cycle: Every Three Years
Course section(s)/other population: All sections
Number students to be assessed: All students
How the assessment will be scored: Rubric: A written test will be given which will be a multiple choice exam with Questions/answers chosen from portions of the section tests given throughout the semester. The exam will be based on key concepts of the course objectives which make up each of the outcomes listed above. Tests will be blind-scored using a Scantron machine and results (right/wrong) for each question asked will be tabulated. A rubric will be used as a standard of the level of success in meeting those Outcomes and objectives that are listed in the syllabus. The test will be divided into sections, each identified with an outcome, and the questions in each section will address the objectives
Standard of success to be used for this assessment: Rubric Used: 1. Average of all students taking the test should equal or exceed 70% correct answers for all questions used in the assessment test. 2.70% or greater of the number of students taking the assessment test should equal or exceed that 70% mark for all the question used in the assessment test. 3. Outcome Success: Average of all student scores for each particular outcome's part of the test should equal or exceed 70%.
Who will score and analyze the data: Instructors teaching the Networking course will blindscore the test and tabulate the results. These will be reviewed and matched with the above rubric and will be used as the standard of measurement during the analysis period. The instructors teaching/developing the course will make necessary analysis and changes based on the results.
5. Define the various aspects of wireless networking including the equipment and the protocols distinguishing the speed progressions, and identify other wireless technologies including Bluetooth, Near Field Communication, and Dedicated Short Range Communication.

Assessment 1

Assessment Tool: Written Exam specifically created for the assessment
Assessment Date: Fall 2021
Assessment Cycle: Every Three Years
Course section(s)/other population: All sections
Number students to be assessed: All students
How the assessment will be scored: Rubric: A written test will be given which will be a multiple choice exam with Questions/answers chosen from portions of the section tests given throughout the semester. The exam will be based on key concepts of the course objectives which make up each of the outcomes listed above. Tests will be blind-scored using a Scantron machine and results (right/wrong) for each question asked will be tabulated. A rubric will be used as a standard of the level of success in meeting those Outcomes and objectives that are listed in the syllabus. The test will be divided into sections, each identified with an outcome, and the questions in each section will address the objectives

Standard of success to be used for this assessment: Rubric Used: 1. Average of all students taking the test should equal or exceed 70% correct answers for all questions used in the assessment test. 2.70% or greater of the number of students taking the assessment test should equal or exceed that 70% mark for all the question used in the assessment test. 3. Outcome Success: Average of all student scores for each particular outcome's part of the test should equal or exceed 70%.
Who will score and analyze the data: Instructors teaching the Networking course will blindscore the test and tabulate the results. These will be reviewed and matched with the above rubric and will be used as the standard of measurement during the analysis period. The instructors teaching/developing the course will make necessary analysis and changes based on the results.

Course Objectives

1. Identify the various types of networks; LAN, WAN, MAN, Enterprise, etc.
2. Define the main purposes of networking, including sharing data, resources, etc.
3. List the differences between peer-to-peer networking and client server networking.
4. Identify Windows networking components representing the server function and the client function.
5. Identify various networking devices including NICS, hubs, repeaters, switches, bridges, modems, wireless access points and routers and explain the operation of each, contrasting the differences between their functionality.
6. Identify computer resources (IRQ's, DMA channel, etc.), NIC card uses, explain the parallel to serial function, buffering techniques, bus mastering, and other characteristics.
7. Install, configure and test various network devices using modems, routers, switches, and hubs. Configure Windows networking properties, including network card installation and configuration.
8. Identify the various wired topologies used in today's networks, including bus, start, extended star, ring, mesh, etc.
9. Identify the primary types of media cabling used with LANs including UTP, fiber optic, atmosphere, etc. and define the limitations of each, including crosstalk, overall length, etc.
10. Identify the seven layers of the OSI model, including the interfaces between the layers, and the virtual transmissions between layers on the sending and receiving machines.
11. Identify the Ethernet networking architecture, including its access method, collision control, contention, encapsulation and limitations.
12. Contrast the CSMACD and CSMACA access methods, and the importance of each in both wired and wireless networking.
13. Contrast other types of networking architectures, including token passing, and the various types used with wireless, explaining the advantages/disadvantages of each.
14. Identify the frame structure used with Ethernet, explaining the parts, headers, trailers, etc. and the function each of these parts have in the transmission process.
15. Identify various networking protocols and explain the term, "protocol stack" and its relationship to the OSI model, using the TCP/IP protocol as an example.
16. Define the key characteristics of IP addressing, both IPv4 and IPv6, the classes, the importance of the subnet mask and gateway, etc., the hierarchical structure, methods of representation (decimal/binary) and the methods used to increase the number of available addresses (such as subnetting).
17. Identify a Windows "socket", its parts, and its importance in the session layer of the OSI model, and contrast the various protocol interfaces (NDIS, NetBIOS, TDI, etc.) and their function in making network protocols transparent to device drivers as well as applications.
18. Differentiate and contrast the various protocols within TCP/IP, (DNS, DHCP, Telnet, ICMP, ARP, VPN, TCP, IP etc.), defining the functions and parts of each within the stack.
19. Differentiate between frames, packets and segments, using encapsulation as the common thread.
20. Install, configure and utilize frame/packet capture programs, and use them to look inside the frame, to identify the various parts in real time.
21. Identify the configurations used with TCP/IP networks, including the use of non-subnetted and subnetted IP addresses, TCP/IP troubleshooting tools, and network packet software for observing the various characteristics of each TCP/IP protocol.
22. Distinguish between the types of wireless networks and differentiate between their various speeds, distances, and applicability to different business situations.
23. Install, configure, and test a number of different types of networks, including: • a simple LAN with hubs; • WAN/LAN networks, (including a three subnet/two router network with workstations at both ends), also with hubs/switches; • a 2nd WAN/LAN network, including a dial-up server, a client workstation, and null-modem serial connections with a terminal program; • a 3rd WAN/LAN network using a combination of wired and wireless machines with a router.
24. Define the types of network printing, showing proficiency in projects involving configuration of the different types for both local printing and network printing using a print server.
25. Identify various VPN configurations and configure client connections to VPN servers, differentiating the multiple connections created when using this type of encrypted transmission.
26. Identify the characteristics of alternate wireless connectivity protocols, including Bluetooth, Near Field Communication, and Dedicated short Range Communication, including operating characteristics as well as inner communication compatibility with other networking devices.

New Resources for Course

Course Textbooks/Resources

Textbooks
Meyers, Michael. CompTIA Network +, Seventh Edition ed. Chicago: McGraw Hill, 2018, ISBN: 1260122387.

Manuals
Periodicals
Software

Equipment/Facilities

Level III classroom
Computer workstations/lab
Data projector/computer

Reviewer	Action	Date
Faculty Preparer: William Reichert Department Chair/Area Director: Philip Geyer Dean: Eva Samulski Curriculum Committee Chair:	Faculty Preparer	Aug 28, 2018
Lisa Veasey Assessment Committee Chair: Shawn Deron Vice President for Instruction: Kimberly Hurns	Recommend Approval Approval	Recommen 12, 2018

