Washtenaw Community College Comprehensive Report

HVA 205 Hydronic Systems Effective Term: Winter 2024

Course Cover

College: Advanced Technologies and Public Service Careers **Division:** Advanced Technologies and Public Service Careers **Department:** Heating, Ventilation and A/C **Discipline:** Heating, Ventilation, Air Conditioning and Refrigeration **Course Number: 205** Org Number: 14750 Full Course Title: Hydronic Systems **Transcript Title:** Hydronic Systems Is Consultation with other department(s) required: No Publish in the Following: College Catalog, Time Schedule, Web Page Reason for Submission: Three Year Review / Assessment Report **Change Information:** Consultation with all departments affected by this course is required. **Course description Outcomes/Assessment** Rationale: Three-year syllabus review based on assessment.

Proposed Start Semester: Winter 2024

Course Description: In this course, students will gain knowledge and skills related to hydronic systems, including steam and hot water boilers. Students will identify major component; students will also analyze and inspect safety and control systems. Students will study the different piping arrays that are used for delivery of heat from a boiler. Electrical wiring of zoning systems is emphasized and practiced. Students remove, inspect and replace boiler components. Students will also learn how to do a heat loss calculation of a residential structure to ensure the boiler is the correct size when updating a system.

Course Credit Hours

Variable hours: No Credits: 4 Lecture Hours: Instructor: 45 Student: 45 Lab: Instructor: 45 Student: 45 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 90 Student: 90 Repeatable for Credit: NO Grading Methods: Letter Grades Audit Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

<u>College-Level Reading and Writing</u>

College-level Reading & Writing

College-Level Math

<u>Requisites</u>

Prerequisite HVA 108 minimum grade "C"

General Education

Request Course Transfer

Proposed For:

Eastern Michigan University Ferris State University

Student Learning Outcomes

1. Identify hydronic systems.

Assessment 1

Assessment Tool: Outcome-related departmental final exam questions Assessment Date: Fall 2025 Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All How the assessment will be scored: Answer key Standard of success to be used for this assessment: 70% of the students will score 70% or higher Who will score and analyze the data: Departmental faculty

2. Identify hydronic system components.

Assessment 1

Assessment Tool: Outcome-related departmental final exam questions Assessment Date: Fall 2025 Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All How the assessment will be scored: Answer key Standard of success to be used for this assessment: 70% of the students will score 70% or higher Who will score and analyze the data: Departmental faculty

3. Demonstrate proper wiring of hydronic zoning systems.

Assessment 1

Assessment Tool: Outcome-related wiring project Assessment Date: Fall 2025 Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All How the assessment will be scored: Answer key Standard of success to be used for this assessment: 70% of the students will score 70% or higher Who will score and analyze the data: Departmental faculty

4. Troubleshoot basic hydronic system components.

Assessment 1

Assessment Tool: Outcome-related departmental final exam questions Assessment Date: Fall 2025 Assessment Cycle: Every Three Years Course section(s)/other population: All

Number students to be assessed: All

How the assessment will be scored: Answer key

Standard of success to be used for this assessment: 70% of the students will score 70% or higher

Who will score and analyze the data: Departmental faculty

Course Objectives

- 1. Identify steam hydronic heating systems.
- 2. Identify closed loop hot water hydronic heating systems.
- 3. Identify hydronic safety devices.
- 4. Identify hydronic control devices.
- 5. Identify hydronic pumping devices.
- 6. Identify hydronic heat emitters.
- 7. Interpret pump curves related to water flow.
- 8. Evaluate a residential structure for heat load requirements.
- 9. Compute water flow requirements for hydronic heat emitters.
- 10. Demonstrate techniques for purging air from hydronic systems.
- 11. Diagnose water flow problems.
- 12. Diagnose mechanical problems.
- 13. Diagnose electrical problems.
- 14. Demonstrate correct wiring for various hydronic zoning systems.

New Resources for Course

Course Textbooks/Resources

Textbooks

Siegenthaler, J.. Modern Hydronic Heating, 4 ed. Cengage, 2023, ISBN: 9781337904919.
Whitman, B. *Refrigeration and Air Conditioning Technology*, 8 ed. Delmar, 2016, ISBN: 978-035701864.
Manuals
Derivative between the second second

Periodicals Software

Equipment/Facilities

Level III classroom

<u>Reviewer</u>	Action	<u>Date</u>
Faculty Preparer:		
Robert Carter	Faculty Preparer	Jul 26, 2023
Department Chair/Area Director:		
Brian Martindale	Recommend Approval	Jul 31, 2023
Dean:		
Jimmie Baber	Recommend Approval	Aug 09, 2023
Curriculum Committee Chair:		
Randy Van Wagnen	Recommend Approval	Jan 07, 2024
Assessment Committee Chair:		
Jessica Hale	Recommend Approval	Jan 08, 2024
Vice President for Instruction:		
Brandon Tucker	Approve	Jan 09, 2024

Washtenaw Community College Comprehensive Report

HVA 205 Hydronic Systems Effective Term: Winter 2018

Course Cover

Division: Advanced Technologies and Public Service Careers Department: Heating, Ventilation and A/C Discipline: Heating, Ventilation, Air Conditioning and Refrigeration **Course Number: 205** Org Number: 14750 Full Course Title: Hydronic Systems Transcript Title: Hydronic Systems Is Consultation with other department(s) required: No Publish in the Following: College Catalog, Time Schedule, Web Page Reason for Submission: Three Year Review / Assessment Report **Change Information:** Consultation with all departments affected by this course is required. **Outcomes/Assessment** Other: Rationale: Review syllabus. **Proposed Start Semester:** Winter 2018

Course Description: This course covers an overview of hydronics which includes steam and hot water boilers. Major components are identified; safety and control systems are analyzed and inspected. Flow characteristics are examined for proper calculation of piping and radiator sizes. Electrical wiring of zoning systems is emphasized and practiced.

Course Credit Hours

Variable hours: No Credits: 4 Lecture Hours: Instructor: 45 Student: 45 Lab: Instructor: 45 Student: 45 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 90 Student: 90 Repeatable for Credit: NO Grading Methods: Letter Grades Audit Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

Requisites

Prerequisite

HVA 108 minimum grade "C"

General Education

Request Course Transfer

Proposed For:

Eastern Michigan University Ferris State University

Student Learning Outcomes

1. Identify hydronic systems.

Assessment 1

Assessment Tool: Departmental final exam will be used to assess understanding of key concepts Assessment Date: Winter 2020 Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All How the assessment will be scored: Answer key Standard of success to be used for this assessment: A minimum of 70% of the students should achieve a score of 70% or higher Who will score and analyze the data: Departmental faculty

2. Identify hydronic system components.

Assessment 1

Assessment Tool: Departmental final exam will be used to assess understanding of key concepts Assessment Date: Winter 2020 Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All How the assessment will be scored: Answer key Standard of success to be used for this assessment: A minimum of 70% of the students should achieve a score of 70% or higher Who will score and analyze the data: Departmental faculty

3. Demonstrate proper wiring of hydronic zoning systems.

Assessment 1

Assessment Tool: Student project Assessment Date: Winter 2020 Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All How the assessment will be scored: Departmentally-developed rubric Standard of success to be used for this assessment: A minimum of 70% of the students should achieve a score of 70% or higher Who will score and analyze the data: Departmental faculty

4. Troubleshoot basic hydronic system components.

Assessment 1

Assessment Tool: Departmental final exam will be used to assess understanding of key concepts

Assessment Date: Winter 2020

Assessment Cycle: Every Three Years

Course section(s)/other population: All

Number students to be assessed: All

How the assessment will be scored: Answer key

Standard of success to be used for this assessment: A minimum of 70% of the students should achieve a score of 70% or higher

Who will score and analyze the data: Departmental faculty

Course Objectives

- 1. Identify steam hydronic heating systems.
- 2. Identify closed loop hot water hydronic heating systems.
- 3. Identify hydronic safety devices.
- 4. Identify hydronic control devices.
- 5. Identify hydronic pumping devices.
- 6. Identify hydronic heat emitters.
- 7. Interpret pump curves related to water flow.
- 8. Evaluate a residential structure for heat load requirements.
- 9. Compute water flow requirements for hydronic heat emitters.
- 10. Demonstrate techniques for purging air from hydronic systems.
- 11. Diagnose water flow problems.
- 12. Diagnose mechanical problems.
- 13. Diagnose electrical problems.
- 14. Demonstrate correct wiring for various hydronic zoning systems.

New Resources for Course

Course Textbooks/Resources

Textbooks

Siegenthaler, J.. *Modern Hydronic Heating*, 3 ed. Delmar, 2012, ISBN: 9781428335158. Whitman,B. *Refrigeration and Air Conditioning Technology*, 7 ed. Delmar, 2013, ISBN: 9781111644475.

Manuals Periodicals Software

Equipment/Facilities

Level III classroom

Reviewer

<u>Action</u>

<u>Date</u>

Faculty Preparer:

Michael Kontry

Faculty Preparer

Apr 06, 2017

Department Chair/Area Director:		
Robert Carter	Recommend Approval	Jun 08, 2017
Dean:		
Brandon Tucker	Recommend Approval	Jun 21, 2017
Curriculum Committee Chair:		
Lisa Veasey	Recommend Approval	Sep 18, 2017
Assessment Committee Chair:		
Michelle Garey	Recommend Approval	Sep 19, 2017
Vice President for Instruction:		
Kimberly Hurns	Approve	Sep 24, 2017